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ABSTRACT

Gibbs oscillations in the truncated spectral representation of the earth’s topography are strongly reduced by
determining its spectral coefficients as a minimum of a nonuniformly weighted, nonquadratic cost function. The
cost function penalizes the difference between spectral and true topography with weights that are explicit func-
tions of the topographic height and its gradient. The sensitivity of the Canadian Climate Centre general circulation
model’s climate to the presence of Gibbs oscillations is determined for T32 and T48 resolutions by comparing
the climates with optimal spectral topography to those with standard spectral topography. The main effect of
Gibbs oscillations in the standard spectral topography is to induce spurious grid-scale ripples in the surface
fluxes, which, for the surface energy balance, can be on the order of several tens of watts per square meter.
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Ripples in the surface fluxes are nearly absent in the model climate with the optimal spectral topography.

1. Introduction

For general circulation models (GCMs) with spec-
tral dynamics, the lower boundary provided by the to-
pography must also be represented spectrally. Unfor-
tunately, the truncated spectral expansion of the topo-
graphic height (referred to here as the spectral
topography) suffers from Gibbs oscillations in real
space that induce spurious ripples in the surface fields.
Gibbs oscillations are a consequence of the nonuniform
convergence of spectral expansions at jump disconti-
nuities (see, e.g., Morse and Feshbach 1953). Thus,
Gibbs oscillations occur where the earth’s topography
has sharp gradients such as, for example, where the
Andes plunge into the Pacific and the Himalayas erupt
from the Ganges plain.

The fundamental reason why the standard spectral
representation of the topography is inadequate is that not
all the model calculations are done spectrally. Most sub-
grid-scale physical processes are parameterized and
modeled in real space, and it is important, therefore, to
have a spectral topography without detrimental artifacts
in real space. Global least-squares optimality for the de-
viations of the spectral topography from the true topog-
raphy is satisfied by the standard spectral expansion, but
clearly this is insufficient to avoid Gibbs oscillations.

These problems have been recognized and two ap-
proaches have been proposed to deal with them. The
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first, explored by Navarra et al. (1994), uses various
filters to smooth the topography either by what is es-
sentially a convolution with a fixed kernel (Sardesh-
mukh and Hoskins 1984) or by smoothing selected lo-
cations directly in real space, which is equivalent to
smoothing with a site-specific kernel. While this ap-
proach reduces Gibbs oscillations by smoothing sharp
gradients, it does not control the choice of a site-spe-
cific kernel in some objective way, and a convolution
with a fixed kernel will generally reduce maxima. Fil-
ters have the advantage of being numerically efficient
so that they could be applied at every time step to a
dynamical variable such as temperature and water va-
por mixing ratio (Navarra et al. 1994), if one deems
this to be physically acceptable.

The second approach, proposed by Bouteloup
(1995), determines the spectral coefficients of the
topography by minimizing a cost function that has a
high penalty for nonflat oceans. This approach has
great flexibility and generality and builds naturally
on the least-squares optimality of the standard spec-
tral topography. Constraints to preserve local max-
ima and any other desirable features can be built into
the cost function. Although the cost function is ar-
bitrary in form and must be artfully crafted, it is no
more arbitrary than a choice of site-specific smooth-
ing kernel. Once the cost function is chosen, the op-
timal-topography approach has the advantage of de-
termining the spectral coefficients by applying a
global criterion homogeneously and isotropically.
The fact that minimizing a cost function is numeri-
cally more expensive than a filter is not an issue for
the topographic height field whose spectral represen-
tation needs to be determined only once.
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In this paper, we build on the ideas of Bouteloup
(1995) to obtain an optimal spectral topography for the
Canadian Climate Centre (CCC) GCM (McFarlane et
al. 1992). Our cost function depends not only on the
topographic height but also on its gradients to effi-
ciently alleviate Gibbs oscillations. In this sense, our
approach amounts to optimal smoothing while enforc-
ing local maxima by minimizing an appropriate global
cost function.

In the following section we briefly define spectral
topography and state its basic properties relevant to our
purposes. We present our rationale for the choice of
cost function and related issues in section 3. In section
4, we examine the sensitivity of the CCC GCM’s cli-
mate to the switch from standard to optimal topography
at T32 and T48 resolutions. We will show that the
Gibbs oscillations in the standard spectral topography
induce significant ripples in the surface fluxes. For ex-
ample, the surface energy balance can have grid-scale
oscillations of peak-to-peak amplitude O(50 W m™2),
Such ripples are strongly suppressed in the climate with
the optimal topography. It follows that an optimal to-
pography with flat oceans is of importance to coupling
atmospheric GCMs to ocean GCMs, where it will likely
help keep flux corrections to a minimum.

2. Spectral topography and least-squares optimality

The height field of the spectral topography, Z°, is
defined as the truncated expansion in spherical har-
monics

N n
Z2Onp) =Y X ZrPr(we™,

n=0 m=—n-~

(1)

where the Z " are the (complex ) expansion coefficients,
P is the associated Legendre function, and A and g
= sin¢ are the longitude and sine of the latitude, ¢,
respectively. [ The truncation of the spectral expansion
used in (1) is referred to as triangular truncation at
wavenumber n = N, or TN truncation or resolution.]
Because Z°isreal, Z ;" = (—1)"Z 7", so that (1) con-
tains (N + 1)? independent real expansion coefficients
(““degrees of freedom’’), and we may take the coeffi-
cients, Z™, with m = 0, as independent.

Given the ‘‘true’’ topography, Z(\, ), specified on
a 2N, X N, Gaussian grid (GG) (which consists of 2N,
equally spaced longitudes and N, latitudes correspond-
ing to the zeros of P,%O), with Ny = N, the spectral
coefficients are normally found via a discrete Fourier
transform over the longitudes and via Gaussian quad-
rature, with weights Wy, (1), over latitudes:

WNO
¥ (1)

Zm=
2N,

ZON, wPr(we ™. (2)

A€ GG

It is easily shown that (1), with coefficients gener-
ated via the transform (2), is an optimal approximation
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to Z in the area-weighted least squares sense. More pre-
cisely, the cost function

Y

. (3

Z-27°

8(Z,2°) = 7
0

z WN()(M) \

MuEGG

for y = 2, and Z* given by (1), is minimized when the
Z ™ are obtained via (2). Thus, if the Z ”* are determined
from (2), Z° is a least squares fit to Z. [In (3) Zyis a
global constant to nondimensionalize the height field.]

3. Construction of a cost function and its optimal
topography

The idea behind an optimal topography is to change
the form of the cost function, &, such that the Z* that
minimizes § is as nearly as possible free of Gibbs os-
cillations while preserving, as much as possible, local
maxima. As in Bouteloup’s approach, we will encode
all geographic weighting of the cost function in the
power vy and otherwise retain the functional form (3).
However, unlike Bouteloup (1995), we include ex-
plicit dependence of y on the gradients of Z since it is
large gradients that are responsible for Gibbs oscilla-
tions. [Bouteloup chooses the form y = a + b
exp(—c|Z|), where a, b, and ¢ are independent of the
topography but can have some dependence on the co-
ordinates and stretching parameter of a coordinate sys-
tem centered on France.] To ensure local maxima are
preserved as much as possible, our cost function also
depends directly on Z scaled by its suitably defined
local maxima.

To obtain an optimal spectral topography involves
three main steps: (a) a decision regarding what we will
take as the true topography and on which grid, (b) a
sensible choice for the form of the cost function, and
(c¢) minimization of the cost function. We will now deal
with each of these in turn and then present the resulting
optimal topographies for T48 and T32 resolutions. At
the end of this section we will briefly revisit the choice
of including the geographic weighting in the exponent.

a. Choice of grid and coarse-grained topography

Because the optimal spectral topography is essen-
tially a least-€ fit to what we specify as the ‘‘true,”” or
““fitting,”” topographyi, this fitting topography should be
a suitably coarse-grained version of the real continuous
topography such that its height field represents an av-
erage over an area whose scale corresponds to the spec-
tral truncation. Furthermore, the grid on which both the
fitting and the spectral topography are evaluated must
be sufficiently fine to sample any Gibbs oscillations
since the difference Z*(x) — Z(x), with x on this grid,
enters the cost function.

Regarding the choice of grid, it should first be em-
phasized that the smallest GG that can represent a field
with TN truncation, that is, the GG with Ny = N, is not
an equivalent grid in the sense that it and its spectral
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FiG. 1. The power y(z, g) of the cost function as a function of scaled height, z, and scaled gradient measure, g.

transform do not contain exactly the same information.
[We refer to this grid as the ‘‘linear’” GG to contrast
with ‘‘quadratic’’ GG (see below).] The linear GG
contains about twice the number of degrees of freedom
as the corresponding spectral representation [2N? ver-
sus (N + 1)?]. However, triangular truncation corre-
sponds to the same resolved scale at any point on the
globe by virtue of the symmetry invariances of spher-
ical harmonics (see, e.g., Sardeshmukh and Hoskins
1984; Jackson 1975), so that this loss of information
is desirable because the linear GG is overresolving es-
pecially and obviously at high latitudes.

Because even the linear grid overresolves the scales
contained in the corresponding truncated spectral expan-
sion, the Gibbs oscillations are evident already on this
grid. (This contrasts with the discrete Fourier transform
of doubly periodic data, which is one to one and repre-
sents the data on its equivalent grid exactly, so that Gibbs
oscillations are seen only when evaluating the spectral
expansion on a finer grid. It should be kept in mind,
however, that even in this case gradients evaluated on
the equivalent grid reveal any Gibbs oscillations. Thus,
even if our spectral transform on the sphere were one to
one, we would still need to worry about Gibbs oscilla-
tions.) Nevertheless, the linear GG only barely resolves

Gibbs oscillations close to the equator, and we choose a
finer grid, namely, the (3N X 3N/2) GG. We will refer
to this grid as the quadratic GG, as it is the grid on which
the quadratic terms of the dynamics are dealiased. Also,
this is the grid on which real-space parameterizations
are evaluated in the current versions of the CCC GCM
(McFarlane et al. 1992).

Our starting point for what we will take to be the
true topography is the initial height field, Z;, defined on
the quadratic GG, which corresponds to an area-
weighted average, over the associated grid box, of a
high-resolution 1° X 1° topography. [This 1° X 1° to-
pography was in turn obtained by area averaging a 10’
X 10’ dataset from the U.S. Navy (Joseph 1980).] The
standard spectral topography of the CCC GCM is the
spectral transform (2) of Z,. However, what is needed
to fit the spectral topography in real space is a topog-
raphy that has been coarse-grained in a homogeneous
fashion, so that every height on the globe corresponds
to an average over the same area. This is not the case
for Z; since the area averaged over becomes increas-
ingly smaller at high latitudes. Hence, using Z; in the
minimization would potentially give the resulting Z* a
high bias at high latitudes. The desired homogeneously
coarse-grained field could, for example, be obtained by
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FIG. 2. (a) The topographies for T48. The ‘‘true”’ topography is the homogeneously re-coarse-
grained ‘“fitting”” topography on the ‘‘quadratic’” GG as described in the text and in appendix A.
From —75 to +175 m, the contour interval is 50 m (straddling zero symmetrically). The other
contours are at n X 1000 m (integer n). (b) As in (a) but for T32. (For plotting purposes, all
spectral topographies were evaluated on a 300 X 150 GG to smoothly sample any Gibbs oscil-

lations.)

averaging the high-resolution data over a circular patch
of constant solid angle at the earth’s center. Here, how-
ever, we simply re-coarse-grain Z; by performing an
area-weighted average over a latitude—longitude box
centered on each point of the GG with (approximately )
constant latitudinal size and a longitudinal extent that
is adjusted so that every such box has the same area,
Ag. The area A, is chosen to be larger than the area,

A, Of an equatorial grid box of the quadratic GG
because the distance between equatorial nearest neigh-
bors of this GG is smaller by a factor of 3/2 than the
nominal length scale of the associated spectral trunca-
tion. The ratio Ay/An.x is controlled by an adjustable
nondimensional parameter, «, where 3/2 > o > 1 and
Ao/Anw ~ a’. The precise details of the re-coarse-
graining procedure are given in appendix A but should
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FiG. 2. (Continued)

not be important as long as the fitting topography re-
spects the homogeneity of triangular truncation.

b. Construction of cost function

To construct the cost function, we need an appro-
priate nondimensional measure, g, of the gradient of
Z. As a simple positive-definite measure of the gradient
we take

_1f1 Z(x + A) - Z(x) 2}“2
g(X) B CO {4 AE(ZNN) [ d(A) ] |

(4)

where x is a point of the quadratic GG, the sum is
over its four nearest neighbors (NN), A is the dis-
placement between x and its neighbor, x + A, d(A)
is the geodesic distance between x and x + A, and
o is a global constant. We want a cost function that
allows deviations of Z° from Z in high-gradient
regions and demands accuracy for local maxima in
low-gradient regions such as the oceans. We nondi-
mensionalize the height field by taking Z, to be 1 m
so that almost everywhere |Z — Z°|/Z, > 1. Thus,
the larger the power y in (3), the larger the cost in
having Z and Z* different by more than Z;. We might,
therefore, write
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7(8) = G[g(x)] = ¥Ymin + (Ymax - ymin)e_g(X), (5)

S0 that ¥ = yu, for large g and ¥ = vy, for g = 0.
However, inspection of G(x) shows that throughout
the interior of mountainous regions, the terrain is rough
(large g) and hence ¥ ~ Yun. This is not desirable
because we wish to constrain the height field to
have approximately correct local maxima. This
can be accomplished by making y(x) also a function of
Z(x) rescaled by the maximum of Z in the neighbor-
hood of x.

We define the neighbourhood of a grid point by a
patch of angular radius 8, as follows: if x is a radial
vector from the center of the earth to the point of in-
terest, x' is in its neighborhood if

x-x'
arccos(——,> < f,.
x| x|
Typically, we take 6, to correspond to about twice the
angular separation between points of the quadratic GG

at the equator. The scaled height, z(x), is now defined
by

(6)

Z(x)
nOZmax(Xa 90) ’

where Z,.(X, 03) denotes the maximum of Z in the
patch of size 8, around x, and 7, = 1 is a O(1) global
scalir.g constant, so that z(x) < 1.

With these choices for a gradient measure g(x), and
scaled height z(x), we find that a satisfactory choice
for v is

¥(2,8) = G(&[1 — F(2)] + vuaxF(2), (8)

with F(z) = z>. The function y(z, g) defined by (8)
smoothly connects y = G(g) at z = 0 with y = Y.«
atz = 1 (i.e., Z = 1oZmax)- The important, and we feel
natural, feature of this choice for y(z, g) is its convex
shape in the z-g plane such that high-gradient regions
are low in cost if they do not coincide with close-to-
local-maximum terrain (such as coast lines), and high
in cost if they do, independent of g (see Fig. 1). The
precise functional forms (i.e., exponential dependence
on g and algebraic dependence on z) are probably not
very important and presumably any other reasonable
choice would also do.

It is clear that the construction of the cost function
involves a number of arbitrary choices. The values of
Ymin aNd Y., the grid over which the cost function is
evaluated, the re-coarse-graining parameter «, and the
functional form of the cost function itself are arbitrary
and there is no physical principal to guide us. For the
remainder of the paper we use the form (3) with (8)
and Yuin = 2, Ymax = 4, and Z; = 1 m. The parameter
Z, sets the scale for the difference between Z and Z°.
If |Z — Z°| > Z,, the larger v, the higher the cost as
desired. Thus, we want Z; to be small such that the
reversed weighting (the larger v, the lower the cost),

(7)

z(x) =
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which occurs for |Z — Z°| < Z,, only comes into play
when |Z — Z°| is already negligible. This is clearly the
case for Z; = 1 m. We chose vy, = 2, so that the cost
of the “‘low cost’’ regions reduces to that of the (stan-
dard) quadratic cost function. The value of vy, = 4
was determined as suitable after some experimentation;
a much larger value leads the cost function to essen-
tially ignore the quality of the fit where y, = 2. To
determine « (see appendix A for definition), some ex-
perimentation showed a = 1.1 to be acceptable inde-
pendent of resolution. A larger value of « caused over-
smoothing in the resulting ‘‘optimal’’ spectral topog-
raphy. This leaves us with three adjustable parameters,
Mo Go, and 6, which are static in the sense that they
are held fixed during minimization. Since 6, is the only
parameter that has an obvious dependence on horizon-
tal resolution, we only adjust it according to the spectral
truncation used. All other parameters have in principle
no, or only weak, dependence on truncation.

¢. Minimization of cost function

Finally, the cost function, §, must be minimized in
the (N + 1)>-dimensional (real) space of the spectral
coefficients to determine the optimal topography. The
global minimum of & in this high-dimensional space
could in principle be found via methods such as sim-
ulated annealing (see, e.g., Press et al. 1992, 436—
448), but here we will be content with finding some
well-defined minimum that has flat oceans and that is
in a sense close to the standard spectral topography.
Since the optimal topography should not be wildly dif-
ferent from the standard spectral topography, we ini-
tialize the spectral coefficients to those of the standard
spectral topography. We then simply perform a
‘‘downgradient’” minimization, which is periodically
nudged to ensure the algorithm does not get stuck in
the first available minimum. For the down gradient
minimization, we use a truncated Newton method
(Press et al. 1992), which makes use of the analytic
form of 8/0Z ”, (appendix B). The nudging is accom-
plished by periodically transforming the spectral coef-
ficients to the quadratic GG, ‘‘clipping’’ off nonflat
Z*(x) in high-cost regions of the oceans, transforming
back, and continuing the minimization (for details, see
appendix B). This nudging of the minimization may
be thought of as a deterministic version of the random
{Monte Carlo) exploration of parameter space in sim-
ulated annealing.

The nudged downgradient algorithm reduces & by
about three orders of magnitude and converges to a
minimum of §, which has strongly reduced Gibbs os-
cillations and nearly flat oceans. We have, of course,
no proof that our final state is close to the global min-
imum of & or that the global minimum has oceans as
flat as our final state. (One could in principle imagine
a global minimum with nearly perfect spectral topog-
raphy everywhere, except for one delta function in the
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middle of an ocean, although one hopes that our cost
function is free of such pathologies.) Nevertheless, us-
ing a well-defined algorithm we find spectral coeffi-
cients that have the desired attributes and whose
““cost,”’ &, is much less than that of the standard spectral
topography.

To guide us in the choice of the static parameters (pa-
rameters of & other than the spectral coefficients), we
considered as a scalar measure of merit the mean negative
spectral topography (Z°)~ = g W(w)Z*O(—Z*%)/
Zoc W () O(—Z"), where the Heaviside function ®(x)
= 0if x < 0, and O(x) = 1 otherwise. Clearly, (Z*)~
is not necessarily minimized by the optimal topogra-
phy, but the gradient of (Z*) ™ with respect to the static
parameters gives some useful guidance.

d. Characterization of optimal topographies

Our best case of the T48 optimal spectral topography
has static parameters 7, = 1.8, {, = 1.611 X 107*, and
#, = 6° and is shown in Fig. 2a together with the stan-
dard spectral topography and the true (fitting) topog-
raphy. To obtain a corresponding T32 optimal topog-
raphy, we simply scale 6, by 48/32 to 9° and retain all
other static parameters from the T48 case. The corre-
sponding topographies for T32 are shown in Fig. 2b.
In Fig. 2 areas where the topographic heights are below
—75 m have been blackened to highlight the regions
where the spectral topographies have Gibbs oscillations
with particularly large amplitude. The peak-to-peak
amplitude of the Gibbs oscillations of the standard
spectral topographies can be as large as several hundred
meters in the ‘‘trouble spots’’ off the coast of Green-
land, south of the Himalayas, west of the Andes, and
off the coast of Antarctica. On the quadratic GG, the
T48 optimal spectral topography has only three grid
points below —75 m, and these are no deeper than —80
m (off the Andes, in the Gulf of Mexico, in the Med-
iterranean). For the T32 optimal spectral topography
(obtained without any further fine-tuning of static pa-
rameters ), two grid points of the quadratic GG are be-
low —75 m (=76 m off the east coast of Greenland,
and —129 m in the Gulf of Mexico). The maxima of
the earth’s major mountainous regions as represented
by the true, standard spectral, and optimal spectral to-
pographies on the quadratic GG are compared in Table
1. Generally, the optimal spectral topography’s max-
ima are closer to the true values, especially for the high,
large-scale mountain systems.

In Fig. 3 we show zonal transects through the to-
pographies at ~21°S, where the Andes plunge into
the Pacific, creating a near discontinuity and the
worst Gibbs oscillations anywhere. Even in this re-
gion, the optimal topographies can be seen to have
strongly suppressed Gibbs oscillations while pre-
serving local maxima reasonably well. The figure
shows both the T48 and T32 cases to illustrate that
the Gibbs overshoot of the standard spectral topog-
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TaBLE 1. Comparison of the maxima of the earth’s major
mountainous regions. The spectral topographies, Z°, are evaluated on
the quadratic ‘‘fitting’’ grid on which the corresponding true
topography, Z, is specified. The relative errors are defined as (Zi.x
- Zmax)/Zmax'

Regional topographic height maxima (m)

Region “True”’ Standard, % error Optimal, % error
T32
Andes 3517 3141 -11.0 3458 -1.7
Himalayas 5047 5638 12.0 5129 1.6
Rockies 2063 2192 6.3 2114 2.5
Ethiopian
Highlands 1900 1714 -9.8 1777 -6.5
Greenland 2886 2960 2.6 2817 -24
Alps 982 821 —16.0 892 -9.2
Antarctica 3685 3863 4.8 3709 0.65
T48
Andes 3827 3514 -82 3636 -5.0
Himalayas 5263 5889 12.0 5374 2.1
Rockies 2384 2369 ~0.63 2254 =5.5
Ethiopian
Highlands 1967 2148 92 2004 19
Greenland 3028 3266 7.9 3178 5.0
Alps 1171 1061 -9.4 1071 -85
Antarctica 3825 3817 -0.21 3758 -1.8

raphy is not alleviated by going to moderately higher
resolution. The main effect of increased resolution is
that the wavelength of the oscillations is proportion-
ately reduced. Correspondingly, there is a reduction
in the area of the regions affected by Gibbs oscilla-
tions, although at T48, Gibbs ‘‘wave trains’’ travers-
ing all the oceans are still visible at the +25-m con-
tour (Fig. 2a).

In Fig. 4, the spectra of the optimal topographies are
compared with that of the standard spectral topography
(which is close to the true spectrum, except for small
corrections close to the truncation wavenumber due to
the fact the Z, is a coarse-grained representation of the
continuous, real topography). Note that the spectra of
the optimal topographies follow the true spectrum quite
closely up to wavenumber n. ~ 20 for T32, and n. ~ 30
for T48, beyond which they decay more rapidly than
the true spectrum as they must if the Gibbs oscillations
are to be suppressed. The fact that the ratio
n.(T48):n.(T32) is about 48:32 indicates that our op-
timization procedure scales appropriately with system
size.

Finally, we offer a few comments on whether we
could have obtained the same ‘‘nonlinear’’ optimal
spectral topographies, denoted for the moment by Z ¢,
with a quadratic cost function &, = Sgg (W/Z3)(Z*
— Z)T that has spatially nonuniform weights T". A
quadratic cost function has the advantage of having
only one minimum that can easily be found by standard
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linear methods. For the minimum of &, to correspond
to_a given Z,, the weights T" must satisfy (9&p/
0Z )| zs=z; = 0, which can be cast in matrix form as
2« M, I';, = 0, where x labels points of the quadratic
GG, and k = (n, m) labels independent spectral coef-
ficients. Thus, I' must lie in the [2(3N/2)?> — (N
+ 1)?*]-dimensional null space of M. However, since
there are no simple constraints on the given Z 3, there
is no guarantee that this null space contains at least one
vector I' of all positive weights [['(x) > 0 for all x].
Therefore, in general it is not possible to find a positive
definite 6, whose minimum is identical to a given
Z3,. Of course, even if one could find a subspace of all
positive weights, by working backward from a given
Z ,, it is not clear that one would be able to express at
least one I' as a simple function of z and g, which is
clearly a prerequisite for a useful &,.

Nevertheless, it may still be possible to get a good
approximation to Z; with a quadratic cost function.
Here, we simply note that using I'(z, g) = v(z, g) as
defined earlier, but with v, = 1, Yax = 100, and F(z)
= z*, yields spectral topographies similar to the non-
linear ones, with strongly suppressed Gibbs oscillations
and reasonable height maxima for T48, and with 6,
scaled, also for T32. Although similar, these ‘‘linear’’
topographies are still inferior to those found from the
nonquadratic cost function. Roughly, the few remain-
ing spots where the topographic height is below —50
m (including those off the Andes) are two to three
times deeper than those of the nonlinear optimal to-

pographies. For both T48 and T32, the maximum
height of the Andes is ~250 m below that of the cor-
responding nonlinear optimal topography, but the other
height maxima of Table 1 are reproduced to within <50
m. The relative success of the functional form of the
weights y(z, g) when used as the weights I' of &,
(without even any systematic exploration of static pa-
rameters) suggests that it is primarily the intuitive de-
pendence of the weights on z and g that is responsible
for suppressing Gibbs oscillations and ensuring ade-
quate height maxima. Whether or not one uses these
weights in the exponent or multiplicatively in &, ap-
pears to be of secondary importance.

4. Effects on model climate

To establish the effect of replacing the standard with
the optimal spectral topography on model climate, we
performed integrations with two versions of the CCC
GCM. For T32, we use the single-transform version of
the model (*‘GCMII,”” McFarlane et al. 1992) in which
physical parameterizations are evaluated on the same
grid as that used for the spectral transforms, namely the
96 X 48 quadratic GG. For T48, we use the double-
transform version of the model (GCMIII) in which the
parameterizations are evaluated on the 96 X 48 GG
(the “‘physics grid’’) as before, but the spectral trans-
forms are performed on a 144 X 72 GG (the quadratic
GG for T48). Thus, for the T48 model, the resolved
scale of the physics grid corresponds to the spectral
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T48, mean sea-level pressure [mb]

JJA optimal

FIG. 5. Maps of the mean sea level pressure for T48 (a) and T32 (b). The contour interval for the pressure maps is 5 mb, with dark shading
below 1000 mb and light shading above 1020 mb. For the difference maps, the contour interval is 1 mb, and grid boxes for which

truncation at least at the equator. In addition to the in-
creased horizontal resolution for the dynamics (T48),
GCMII also features higher vertical resolution (30 lev-
els to 1 mb, versus 10 levels to 10 mb in GCMII), an
improved land-surface scheme (Verseghy 1991; Ver-
seghy et al. 1993), a penetrative convection parame-
terization (Zhang and McFarlane 1995), and a hybrid
moisture variable to reduce ‘‘hole filling.”’ { The hybrid
moisture variable, s, is defined in terms of the specific
humidity, g as s = g for ¢ = go, and s = go/[1 — In(q/
qo)] for g < qo, with g, = 10 g kg~'.} For both T32
and T48, the fields shown in this section are evaluated
on the 96 X 48 (physics) GG.

For summer (JJA) and winter (DJF), we compare
the grand seasonal means, obtained with the optimal
spectral topography (the ‘‘experiment’’), with the
grand seasonal means of the corresponding model
with standard spectral topography (the ‘‘control’”).

For T48, we compare a 5-yr experiment with a 5-yr
control, and for T32, a 3-yr experiment with a 10-yr
control. [Such relatively short runs turn out to be
sufficient to reveal statistically significant differ-
ences in the climates (see below).] Other than the
difference in the spectral topographies, the models
for experiment and control were identical and in par-
ticular used the same land mask and vegetation fields.
In both the T32 and T48 cases, observed climatolog-
ical sea surface temperatures (SSTs) were specified
(annual cycle but no interannual variability). Dif-
ferences { experiment — control, i.e., optimal — stan-
dard) in the grand seasonal means of some quantity
X, denoted by 6X, are tested for statistical signifi-
cance with a t test based on the interannual variance
of the seasonal means. (Unless explicitly stated
otherwise, all variables in this section denote grand
seasonal means; no overbar is used.)
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T32, mean sea-level pressure [mb]

JJA optimal

FiG. 5. (Continued) the difference of means is statistically significant at the 5% level are shaded.

For both the T48 and T32 climates, zonally averaged
quantities do not differ significantly between experi-
ment and control. There are only relatively small dif-
ferences in the large-scale fields of which those in the
mean-sea-level pressure (MSLP), shown below, are
typical. The most pronounced, statistically significant
changes are evident in the surface fluxes and stresses
that will be the main focus of this section.

Figures Sa—b show MSLP for DJF and JJA. For T48
(Fig. 5a), there are only minor differences in MSLP
between the standard and optimal topographies. In-
creases of O(1 mb) in the Tropics are statistically sig-
nificant at the 5% level due to the small variability of
the sea level pressure in the Tropics. For DJF, there is
also a statistically significant change over the eastern
north Atlantic off Europe, where the optimal case has
a slightly higher Icelandic low and slightly stronger
ridge over Europe. For T32 (Fig. 5b), the optimal to-
pography shows improvements in MSLP for DJF in the

Northern Hemisphere. The Aleutian low does not pen-
etrate as far inland as in the standard case. This is pre-
sumably due to the flatter Gulf of Alaska, and the fact
that the Alaskan mountains of the optimal spectral to-
pography extend farther west (see Fig. 2b), giving a
better representation of the blocking effect of the Alas-
kan coastal range. The Aleutian low is also not as deep
and allows the east Asian high to extend over Siberia,
in closer agreement with observations. The statistically
significant change over the north Atlantic corresponds
to a higher Icelandic low in the optimal case, which is
somewhat closer to observations. For JJA, the statisti-
cally significant differences are again small changes in
the Tropics and a slight enhancement and westward
extension of the South Pacific subtropical high.
Ripples in the standard spectral topography over the
oceans do not produce rainbands directly through spu-
rious orographic lift. However, when precipitation, P,
is large, such as during the Indian summer monsoon,
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6P shows a clear correlation with the topographic rip-
ples 6Z° (Figs. 6a-b). Where grid-scale bumps in the
ocean are flattened there is less precipitation, where
depressions are raised there is more. The major ‘‘rain-
bands’’ in 0P, especially for T48 over the Bay of Ben-
gal (Fig. 6a), are statistically significant at the 5%
level. Although both optimal and standard topographies
represent India as a single mountain at T32 resolution,
the flatter oceans of the optimal topography come at
the price of more circular topography contours. Nev-
ertheless, a flatter Arabian Sea, together with a slightly
higher terrain over central western India, conspire to
give a more realistic precipitation field in the T32 op-
timal case, which has a well-defined maximum in P of
~9 mm day ~' over western India (Fig. 6b). The stan-
dard case has a maximum in P of more realistic elon-
gated shape, but it is too low by a factor of about 2.
An atlas (e.g., Fullard and Darby 1984, 89) shows a
maximum of P along the Western Ghats mountain
range in excess of ~12 mm day ~' over an area roughly
equivalent to that enclosed by the 8 mm day ™' contour
of the T32 optimal case. At T48 resolution there are no
significant differences over the Western Ghats, but 6P
and the fields themselves clearly show that the precip-
itation from the standard run has a high-wavenumber
spatial modulation on the order of ~2 mm day™',
which is correlated with the spurious Gibbs ripples.

The fluxes that couple the atmosphere to the ocean
are the freshwater flux P — E (where E is the surface
evaporation flux), the wind stress, 7, exerted on the
surface, and the net energy balance at the surface, Hg.
We briefly examine the general features of these fields
and then focus more closely on a representative feature
of 6H;, which shows a particularly large response to
6Z°. Figure 7 shows that P — E is smoother for the run
with the optimal topography, and especially for T48,
conspicuous ripples in the south Pacific visible for the
standard run are absent. (The covariance of P X E was
not available to allow computation of a statistical sig-
nificance level.) The response of the wind stress, 67,
to having Gibbs ripples nearly eliminated is shown in
Fig. 8. (The grand-seasonal-mean value of the stress
amplitude was estimated as the amplitade of the mean
stress, i.e., |7| ~ |7|.) Ripples in §|7| are clearly
aligned with ripples in 6Z° (Fig. 2), where 67 is statis-
tically significant (at the 10% and 2% levels of a Ho-
telling ¢ test for vectors).

Figures 9a-b show the net energy balance at the
surface, H. For the standard topography, large-ampli-
tude ripples in H can be seen over the oceans. For T48
(Fig. 9a), H; shows a pronounced wave train from the
Andes to the central tropical Pacific, where 6Hs/H can
exceed 50% with both Hg; and 8H on the order of
several tens of watts per square meter (Fig. 10, middle
and fourth panel). For T32 (Fig. 9b), the Pacific fea-
ture is less pronounced, but there are large-amplitude
ripples in Hg stretching across the tropical Atlantic
from northeast South America to northwest Africa. For

JOURNAL OF CLIMATE

VOLUME 9

both T32 and T48, these ripples align with correspond-
ing features in the standard topography (Fig. 2) and in
5|7 (Fig. 8).

We focused on the region (45°S—45°N) X (180°—
GM) for 7 and H;; to show the details of a response to
6Z° with large signal to noise ratio (~5-10) and hence
large f-ratio. (For a response 6X, we define the signal
to noise ratio as |6X |/oy, where 0% is the interannual
variance of X.) Both fields also exhibit a “‘spotty’’ band
of statistically significant response with comparable
signal to noise ratio just off the coast of Antarctica (not
shown). The Gibbs ripples, 6Z°, in this region are also
large and align with the response much as they do for
the Pacific feature.

As a quantitative measure of the correlation between
the differences of some field, 6X, and the change in the
spectral topography, 6Z°, we compute the area-aver-
aged correlation coefficient, r, defined as

(6X'6Z°")
[((6X")*)(8Z°")*)?°

where ( ) denotes the spatial average over the area of
interest, X’ = 6X — (6X), and §Z°' = 6Z° — (6Z*).
For T48, these correlation coefficients are collected in
Table 2 for a number of surface fields, where the areas
of interest are the entire globe, land only, ocean only,
and those parts of the ocean where 6X is statistically
significant at the 5% level. [ When X is a vector mag-
nitude, |V |, the regions where 8§V (not 6|V |) is sig-
nificant at the 5% level are used to define ‘‘ocean and
5%’.] Because the 7 test at the 5% level selects regions
of high signal to noise ratio, the ‘‘ocean and 5%’ cor-
relations are much higher than the oceanwide ones. The
best-correlated field listed in Table 2 is the temperature
at the lowest model level, T, . This is no surprise over
land, where (anti)correlations exceed —0.75, since
higher land sees lower ambient pressure and hence
cooler atmospheric temperatures with which the land
surface is allowed to equilibrate. The relatively high
(anti)correlations over the oceans are less obvious be-
cause the SSTs are identical between experiment and
control. Nevertheless, changes in elevation imply
changes in the ambient pressure that are sufficient to
change the average air temperature at the lowest level.
However, there is substantial control by the SSTs
through heating as can be seen, for example, from the
fact that 67, over the oceans is much less than what
would be expected from 6Z° if one was merely seeing
an adiabatic lapse rate (Fig. 10, second panel).

We now focus on the ripples of H; in the Pacific for
T48 and ask through which basic physical processes
the Gibbs oscillations in the sea surface height induce
modulations in Hs. The surface energy balance is de-
fined by

H;=-LE—H+R

=

€))

+ (other phase change terms), (10)



FIG. 6. Maps of the JJA Indian monsoon precipitation for the area (5°S—30°N) X (60°—120°E) for T48 (a) and T32 (b). The contour
interval of the precipitation itself is 2 mm day~'. The difference field is contoured every 1 mm day~' and overlaid with shaded grid
boxes where the difference of means is statistically significant at the 5% level. For reference, the difference field, 6Z°, of the spectral
topographic height is shown with a contour interval of 50 m (light shading for 6Z° > 25 m; dark shading for 6Z° < —25 m).
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FIG. 7. The net freshwater flux into the surface, P — E, with a contour interval of 1 mm day~'. The largest value contoured is 6 mm day ™.

where LE is the latent heat flux due to evaporation, H
is the sensible heat flux into the atmosphere, and R is
the surface radiation balance. In the Tropics freezing
of water at the surface is unlikely, so that

§H; = —LSE — 6H + 6R. (11)

Because both experiment and control were forced with
identical SSTs, there is no change in the outgoing long-
wave radiation and OR represents changes in the ab-
sorbed incoming radiation flux only. Figure 10 (fourth
panel) shows the balance (11). The ripples in 6R are
consistent with ripples in the total cloud fraction, 6C (not
shown). Over the region under discussion, §C has a
peak-to-peak amplitude of ~15%. ( Although there is no
perfect correlation, generally more clouds result in less
absorbed solar radiation at the surface, that is, 6R
~ —6C.) We will now focus on the latent heat term
L6E, which is seen to dominate the surface energy bal-
ance.

The evaporation flux, E, is parameterized in the
GCM as

E = -pCRi)|v[(q — g*),

where C(Ri) is a turbulent transport coefficient pa-

(12)

rameterized as a function of a bulk Richardson num-
ber, Ri; the quantities p, |v|, and g are the air density,
wind speed, and specific humidity at the lowest
model level; and g * is the saturation specific humid-
ity at the surface. In (12) only, all variables denote
quasi-instantaneous quantities (adjusted at each time
step of the model) and not grand-seasonal means like
elsewhere in this section. We have checked from
daily data that, to a reasonable approximation, a sim-
ilar equation holds for the grand-seasonal means so
that we may write

E~ -C|v]0Q, (13)

where Q = (g — ¢*) and C is approximately constant
(AC/C ~ 5% in the region of interest). Thus, it fol-
lows that

8E _olvl | &9

E vl Q0
This is not a precise equality because of the neglect of
66 second-order terms and also because (13) neglects
temporal correlations between the various terms of (12).

We can use (14) to get a qualitative idea of how the
induced changes in the wind and moisture fields con-

(14)
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FiG. 8. The difference in the wind stress, 87, (vectors) over the ocean for the area (45°S—45°N) X (180°~GM). In the top panels the
shading indicates §|7|. In the bottom panels grid boxes are shaded where 67 is statistically significant.

tribute to the large induced changes in the surface en-
ergy balance. [This is similar in spirit to the work of
Boer (1993), who studied climate changes induced by
a doubling of CO,.] Figure 10 (bottom panel) shows
that §|v|/|v| and 6Q/Q have the same sign and con-
tribute roughly equally to the ripple feature of 6H in
the Pacific. [ The denominators in (14) are taken from
the climate with the optimal topography and do not go
through zero in the region of interest (see Fig. 10, mid-
dle panel).] The signs of 60 and §|v| make intuitive
sense and are consistent with 67, shown in Fig. 10:
cooler (warmer) overlying air is drier (more moist),
causing a larger (smaller) vertical surface moisture gra-
dient, Q. One also expects flow to speed up over the
crests of Gibbs ripples and to slow down over troughs,
giving the sign of §|v| seen in Fig. 10 and in Table 2.

Finally, it is clear that not all topographic ripples induce
observable ripples in the surface climatology. A number
of factors must conspire to give a clean ripple response
to 6Z°. For time series of only finite length, the response

will be most apparent where it is large compared to the
interannual variability. Also, fields that are sensitive to
the high-wavenumber topography, for example, precipi-
tation and lowest-level temperature, T, , over land, appear
to have a larger, more direct, response to 6Z° than less
sensitive large-scale fields like, for example, MSLP. From
the analysis of the contribution of §|v| to 6H,; (Fig. 10),
it is also clear that modulations of the lowest-level wind
can play an important role. Since 6|v| is largest where
the lowest-level wind is blowing across the ripples of the
standard topography (i.e., in a direction perpendicular to
the ripple crests), the largest ripple response in 6Hg is
expected from those wave trains of 6Z° that align with a
strong surface circulation. This is consistent with the rip-
ple features of 6H;; in the Pacific for T48 and in the trop-
ical Atlantic for T32.

5. Summary and conclusions

We have constructed a global cost function for the
difference between the spectral and true topographies,
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F1G. 9. Maps of the surface energy balance, Hg, for the area (45°S—45°N) X (180°-GM) for
T48 (a) and T32 (b). The contour interval for Hg is 20 W m~? with dark shading for H; < —80
W m™? and light shading for H; > 80 W m™2 Here 6H; is contoured with a 10 W m~2 interval,
and grid boxes have been shaded where 6H;; is statistically significant at the 5% level.

which when minimized largely eliminates Gibbs oscil-
lations in the spectral topography, while preserving the
large-scale height spectrum. The geographic weighting
of the cost function is encoded in an exponent that de-
pends on the true topographic height and a measure of
its gradient. The weighting penalizes discrepancies

from flatness over the ocean and tries to retain local
maxima in the topography but is lenient in regions of
large gradients that are the cause of Gibbs oscillations.

The Gibbs oscillations of the standard topography
cause spurious ripples in the surface fields, particularly
over the oceans. These ripples can extend over large
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FiG. 9. (Continued)

regions (e.g., most of the tropical Atlantic and eastern
tropical Pacific), have a wavelength on the order of
two (equatorial ) grid spacings, and, for the surface en-
ergy balance Hg, can have amplitudes as high as sev-
eral tens of watts per square meter. The climates with
the optimal topographies are nearly free of such ripples
and have generally much smoother surface fluxes. The
zonally averaged and large-scale fields of the climate

with the standard topography are largely preserved in
the corresponding optimal case.

Although the ripples of the standard topog-
raphy over the ocean were not of sufficient amp-
litude to induce spurious rainbands as such,
they do impose a spurious large-wavenumber
modulation on the seasonal-mean precipitation.
This modulation is particularly large and statis-
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FiG. 10. Zonal slices through the fields indicated at ~16.7°S (five grid boxes south
of the equator on the 96 X 48 GG).

tically significant where both §Z* and the precipi-
tation are large, such as in the region of the Indian
summer monsoon.

The large-amplitude ripple feature of H; in the Pa-
cific for T48 was examined in some detail. There 6H
is dominated by changes in the latent heat flux of evap-
oration LSE. Modulations in the lowest-level wind
speed, §{vi{/|v|, and in the vertical moisture gradient

at the surface, §Q/Q, each contribute about 50% to SE/
E. The changes 6Q are consistent with the changes in
the lowest-level temperature, §7,, which are anticor-
related with 6Z° as expected from adiabatic cooling
over ripple crests.

Since the climate with the optimal topography is free
of the large-amplitude, high-wavenumber spurious os-
cillations in the surface fluxes over the oceans, the op-
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TABLE 2. Area-averaged correlation coefficients, r, defined by Eq.
(9), for the correlation between the fields indicated and the change
in height of the spectral topography, 6Z°. Here Hg is the surface
energy balance, H is the sensible heat flux into the atmosphere, E is
the evaporation flux, P is the precipitation flux, 7}, is the lowest-level
temperature, |v| is the lowest-level wind speed, and | 7| is the wind-
stress amplitude. [The P X E covariance was not available to compute
the 5% significance level for § (P — E).}

Field Global Land only Oceanonly Ocean and 5%
JIA
b6Hg -0.22 —0.03 -0.47 —0.63
6H -0.23 -0.38 0.36 0.54
OF 0.30 0.30 0.41 0.59
6P 0.31 0.27 0.42 0.59
6P —E) 0.18 0.18 0.19 —
6Ty, -0.69 -0.78 —-0.40 —0.60
51v) 0.15 0.19 0.22 0.30
él7| 0.08 0.10 0.20 0.26
DIJF
6Hg -0.20 0.05 —0.43 -0.54
6H 0.30 0.37 0.35 0.46
6E -0.21 —-0.40 0.36 0.46
6P 0.39 0.40 0.39 0.59
6P —E) 0.29 0.34 0.19 —
6T, —0.69 -0.76 —-0.41 —-0.56
slvl 0.07 ~0.01 0.14 0.10
67| -0.10 -0.23 0.08 0.05

timal topography should be a definite asset when cou-
pling an atmospheric GCM to an ocean model, possibly
reducing local flux corrections.
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APPENDIX A
Details of the Re-Coarse-Graining Procedure

The “‘initial’” topography, Z,, is re-coarse-grained as
follows: we erect a latitude—longitude box of area A,
and sides A¢; and AN, centered on each point (\;, ¢;)
of the GG as shown in Fig. Al (j labels latitudes and
AN depends only on latitude). Because the distance
between equatorial nearest neighbors of the quadratic
GG is smaller by a factor of 3/, than the nominal length
scale of the associated spectral truncation, we take A,
> Amax, Where A, (Adjo, ANyp) is the area of the Ay,
by A\ grid box of the GG at the equator (Fig. Al).
We control the size of A, with the (adjustable, but glob-

HOLZER

2461

ally constant) parameter «, with which we inflate the
latitudinal grid spacing of the GG. Away from the
poles, we take Ad; = aAPFCE, where Ad7° = (P4
+ ¢;_1)/2 is the latitudinal size of the GG box at lati-
tude ¢;. (At the North Pole we use A¢;, = 7/2 — [¢;
— a(¢d; — ¢;-1)/2], with a corresponding expression
for the South Pole.) The longitudinal size, A\;, of the
re-coarse-graining box is then adjusted such that every
such box has area Ay = A (aAdjo, ®lANy). Thus, Ag/
Amax = a sin(aAdj/2)/sin(Adjp/2) ~ a?, where the
approximation would be an equality if we were not on
a sphere.

If the GG grid box associated with any Z,(\;/, ¢;1),
has an overlap of area 4; ;. ;» with the re-coarse-grain-
ing grid box of area A, centered on (\;, ¢;), we define
the re-coarse-grained height Z(\;, ¢;) by the area-
weighted average

Z(N;, 4’]) = Ai 2 Ai.j;i',j'Zl()\i" d’j'), (Al)
0
where 2, ;+ A; ;i = Ao.

The algorithm that produces Z; from high-reso-
lution datasets Z, = O over ocean grid points, as de-
termined from an independently computed land-
mask on the quadratic GG. To make Z also consis-
tent with this constraint, we simply set Z = Z;
wherever Z; < 1 m.

APPENDIX B
Details of Minimization and Clipping Algorithm

The truncated Newton algorithm used [a variant of
the Davidon—Fletcher—Powell algorithm, see Press et
al. (1992, 421), main routine DFPMIN] converges for
a quadratic cost function of K degrees of freedom in K
steps, which gives a scale for the number of steps nec-
essary in the nonlinear case. The algorithm takes ad-
vantage of the fact that we know the analytic form of
the gradients of the cost function, &, with respect to the
spectral coefficients. If xJ7 and y} denote the real and
imaginary parts of the independent (m = 0) coeffi-
cients Z" = x + iy™ (recall, yS = 0), these gradients
are given by

e o8
oxm’ Qym
Mg () (o oy
o Z Zo Zo oxm’ oym )’
(B1)
with
oz:
axg - Pn(/J')3 (Bz)
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and, for m # 0,
(’ o0Z° 0Z°

oxp Oyl

> = 2P (u)(cos(mN\), —sin(m\)).

(B3)

To ensure that the downgradient minimization al-
gorithm does not get stuck in the first local minimum
it finds if other lower-cost minima are close by, we
nudge the spectral coefficients periodically to steer the
minimization toward a minimum (hopefully close to
the global minimum) that has flat oceans and as little
excess negative topographic height as possible. The
nudging consists of periodically *‘clipping’’ off ripples
over the ocean and any excess negative height as fol-
lows: every O(N?/5) steps of the truncated Newton
algorithm, we transform to the quadratic GG and set
Z°(x) to Z(x) if Z°(x) < O anywhere, or if both
|Z(x)| < Zyand y(X) > vy, with yo = 0.995y,,.«. This
sets Z* to Z over those regions of the oceans where we
insist on a good fit (e.g., away from high-gradient coast
lines) and over any regions where the spectral topog-
raphy is negative. After the clipping, we trans-

form back to spectral space and multiply Z § by a con-
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stant to ensure the global mean height before and after
the clipping is the same. (If this rescaling is not done,
the clipping can shift the mean height, and the ensuing
minimization, the large scales of the spectrum, by as
much as a few meters per clip.)

The nudged minimization converges after ~SNZ
steps and reduces & by about three orders of magnitude
when the standard spectral topography is used as the
initial state. During the final stages of the algorithm, a
clipping typically increases & by a factor of only <1.2,
and the subsequent truncated Newton method appears
to find approximately the same state that was obtained
before the clipping. Whether our final state is clipped
or not makes a negligible difference to the ‘‘optimal’’
spectral topography compared to the improvement al-
ready achieved over the standard spectral topography
[over the oceans, O(10 m) changes at a few grid
points].

One might ask how effective the clipping is by itself
in reducing Gibbs oscillations. A single clip reduces
the amplitude of the Gibbs oscillations off the Andes
by about a factor of two and lowers the cost, &, by about
an order of magnitude. Iterating the clipping (without
any downhill minimization) converges to a ‘‘clipping

A
/2
Amin Aq)jp
°
] | | ! |
. I . . . }
dpry e o | o |- -
AqﬁG{q)j o o |0 |0 | -

i equator
—-

A

Amax

FiG. Al. Diagram explaining the various grid boxes discussed in appendix A. The heavy dots
indicate the latitude—longitude quadratic GG. The cross-hatched areas are examples of the
associated grid boxes. The grey-shaded areas are constructed to all have area A, ~ a?A . and
correspond to the areas over which the ‘‘initial”’ topography on the quadratic GG, Z,, is averaged
(with area weights) to form the ‘‘true,”” or ‘‘fitting,”” topography, Z, defined on the same GG.
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topography’’ that has a cost & reduced by about two
orders of magnitude from that of the standard spectral
topography. Over the oceans, the clipping topography
turns out to be very close to that of the optimal topog-
raphy. However, over land the clipping topography is
very much degraded compared to both the standard and
optimal topographies. For example, the local maximum
over South America is significantly reduced (by ~1000
m), and obvious Gibbs oscillations over land (e.g.,
north of the Himalayas) are still present. The clipping
by itself is thus not a viable means of reducing Gibbs
oscillations without doing serious damage to the to-
pography over land.
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